

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0655 of 19 May 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Screwbolt TSM

Mechanical fastener for use in concrete

Sikla Holding GmbH Kornstraße 4 4614 MARCHTRENK ÖSTERREICH

Sikla Herstellwerk 2

19 pages including 3 annexes which form an integral part of this assessment

EAD 330011-00-0601 and EAD 330232-00-0601

ETA-16/0655 issued on 30 September 2016

European Technical Assessment ETA-16/0655 English translation prepared by DIBt

Page 2 of 19 | 19 May 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 19 May 2020

European Technical Assessment ETA-16/0655 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Screwbolt TSM is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B2 and C1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1
Displacements (static and quasi-static loading)	See Annex C6
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex A3, C2, C3, C4 and C7
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C5

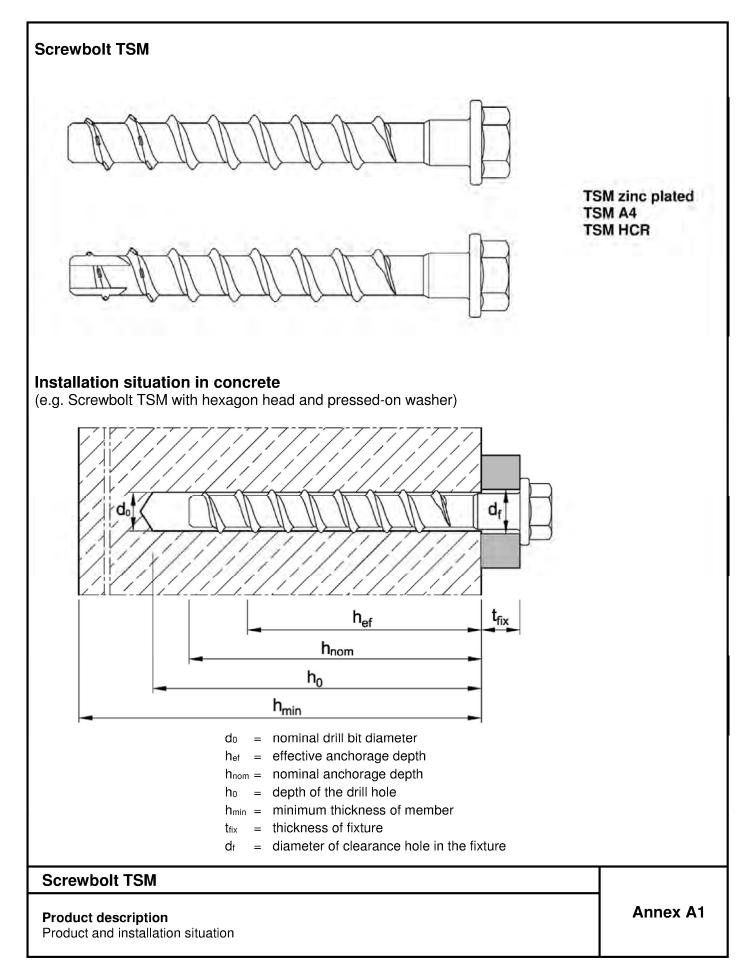
European Technical Assessment ETA-16/0655

Page 4 of 19 | 19 May 2020

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330011-00-0601 and EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 19 May 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

	Anchor types		TSM -	Description							
1		0	ВІ	Anchor version with metric connection thread and hexagon socked							
2		0	в	Anchor version with metric connection thread and hexagon drive							
3		(SUTX	Anchor version with hexagon head, pressed-on washer and TORX drive							
4		(95,2) (90 - 90)	SU	Anchor version with hexagon head and pressed-on washer							
5		(93,2) (3,9)	Anchor version with hexagon head								
6		(A) A) A) A) A) A) A) A) A) A) A) A) A) A	SK	Anchor version with countersunk head and TORX drive							
7		(C C C C C C C C C C C C	LK	Anchor version with pan head and TORX drive							
8		(LP	Anchor version with large pan head and TORX drive							
9		0	BSK	Anchor version with countersunk head and metric connection thread							
10		$\langle \bigcirc \rangle$	ST	Anchor version with hexagon drive and metric connection thread							
11			ІМ	Anchor version with internal thread and hexagon drive							
Scre	ewbolt TSM										
	luct description			Annex A2							

Page 7 of European Technical Assessment ETA-16/0655 of 19 May 2020

English translation prepared by DIBt

Anchor size			TS	М 6		TSM 8			TSM 10			'SM 1	2	TSM 14			
Nominal anchorage depth	h _{nom}	[mm]	40	40 55		55	65	55 75 85		65	85	100	75 100		115		
Length of the anchor	L≤	[mm]					500										
Core diameter	dĸ	[mm]	5	,1		7,1			9,1			11,1			13,1		
Outside diameter	d₅	[mm]	7	,5		10,6			12,6			14,6			16,6		
Shaft diameter	dp	[mm]	5	,7	7,9			9,9			11,7			13,7			
Shart drameter Up [mm] 3,7 7,9 3,9 11,7 13,7 Marking e.g.: \diamond BSZ 10 00 or TSM 10 100 ds dk dp Tsm ds dk or TSM identification \diamondsuit) 10 Anchor size																	

100 Length of anchor

A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant steel

Table A3: **Materials**

Version	Steel, zinc plated TSM	Stainless steel TSM A4	High corrosion resistant steel TSM HCR						
Material	Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 or zinc flake coating acc. to EN ISO 10683:2018 (≥ 5µm)	1.4401, 1.4404, 1.4571, 1.4578	1.4529						
Nominal characteristic steel yield strength f_{yk}		560 N/mm ²							
Nominal characteristic steel ultimate strength fuk		700 N/mm ²							
Elongation at fracture As	≤ 8%								

Screwbolt TSM

Product description

Dimensions, marking and materials

Page 8 of European Technical Assessment ETA-16/0655 of 19 May 2020

English translation prepared by DIBt

Spec	ifications of Intended use															
Screw	vbolt TSM	TSI	TSM 6		TSM 8			SM 1	0	Т	SM 1	12	Т	SM 1	4	
Nomir	nal anchorage depth h _{nom} [mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115	
(0	Static or quasi-static loading							v	(
Anchorages subject to	Fire exposure	\checkmark														
uncho subje	Seismic action C1	v	/	-		~	~	-	~		•	~		-	~	
4	Seismic action C2 (screwbolt TSM, zinc plated)	-			•	~	-	-	~		•	~		•	~	
erial					ncrete 🗸											
Base material	Reinforced or unreinforced concrete (without fibers) acc. to EN 206:2013							v	(
Base	Strength classes according to EN 206:2013: C20/25 to C50/60							v	/							

Use conditions (Environmental conditions):

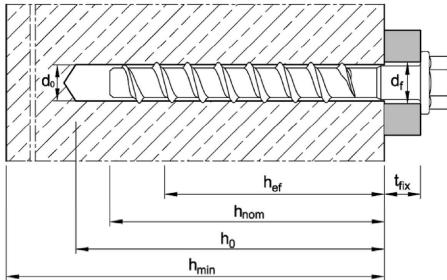
- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
 - Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel) Note: Particular aggressive conditions are e.g. permanent, alternation immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055.

Installation:

- Making of drill hole by hammer drilling (all sizes) or vacuum drill bit (TSM 8 TSM 14). When using a vacuum drill bit no drill hole cleaning is required.
- Anchor installation carried out by appropriately qualified personal and under the responsibility of the person responsible for technical matters on site.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- The borehole may be filled with the Injection Systems VME or VME plus.
- Adjustment according to Annex B4: for screwbolt TSM 8 to TSM 14, all anchorage depths


Screwbolt TSM

Intended use Specifications Annex B1

Deutsches Institut DIB für Bautechnik

Table B1: Installation	Table B1: Installation parameters															
Anchor size			TS	M 6	TSM 8			TSM 10			Т	SM 1	2	TSM 14		
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Nominal drill bit diameter do [mm]		6			8			10			12			14		
Cutting diameter of drill bit	eter of drill bit $d_{cut} \leq [mm]$		6,	6,40		8,45			10,45			12,50)		14,50)
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Depth of drill hole	h₀≥	[mm]	45	60	55	65	75	65	85	95	75	95	110	85	110	125
Diameter of clearance hole in the fixture	d _f ≤	[mm]	8	3	12			14			16			18		
Max. installation torque for screws with metric connection $T_{inst} \leq [Nm]$ thread		10			20			40		40 60		80		80		
Tangential impact screw driver 1)	T _{imp,max}	[Nm]	16	60		300		400			650			650		

¹⁾ Installation with tangential impact screw driver, with maximum power output T_{imp,max} acc. to manufacturers instructions is possible

Minimum thickness of member, minimum edge distance and minimum Table B2: spacing

Anchor size			TS	M 6	TSM 8			TSM 10			Т	SM 1	2	TSM 14			
Nominal embedment depth	\mathbf{h}_{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115	
Minimum thickness of member	\mathbf{h}_{min}	[mm]	8	80		80		80	90	102	80	101	120	87	119	138	
Minimum spacing	Smin	[mm]	4	40		40 50		40 50 50		50		5	50 70		50	7	0
Minimum edge distance	Cmin	[mm]	4	40		40 50		50		50		0	70	50	7	'0	

Screwbolt TSM

Intended use

Installation parameters / Minimum thickness of concrete member, minimum spacing and edge distance

Annex B2

Installation instructions	
Drill hole preparation and cleaning	
1 Drill hole perpendicular to concrete surface. Using a suction drill, continue with step 3.	
2 Blow out dust or alternatively vacuum clean dow the hole.	n to the bottom of
Installation screwbolt	
3 Screw in, e.g. with tangential impact screw drive	r or torque wrench.
4 After installation, the head of the anchor is support and must be undamaged.	orted on the fixture
Screwbolt TSM	
Intended use Installation instructions	Annex B3

Installation instruction	s - filling of annular gap	
Drill hole preparation and	cleaning	
	Drill hole perpendicular to concrete surface. Using a suction drill, continue with step 3.	
2	Blow out dust or alternatively vacuum clean down to the bo	ottom of the hole.
Installation screwbolt with	i filling washer	
3	Fit the filling washer to the screwbolt. The thickness of the filling washer must be taken into acco	unt with t _{fix} .
4	Inst	wrench.
5	Fill the annular gap between screwbolt and fixture with mo strength ≥ 40 N/mm², e.g. Injection mortar VMZ or VMU plu Use enclosed reducing adapter. Observe the processing in mortar! The annular gap is completely filled, when excess mortar s	us). formation of the
For seismic loading, the app	plication with and without filling of annular gap is permitted (Annex	C3-C4).
	g adapter for filling the annular gap between screwbolt and fixture thickness of filling washer t = 5 mm	3
Screwbolt TSM		
Intended use Installation instructions with	filling of annular gap	Annex B4

Drill hole preparation and	cleaning: Annex B3, Picture 1 and 2 / Installation: Annex	B3, Picture 3 and 4
1. Adjustment		
5	Screw may be untightened maximum 10mm.	
6 T	After adjustment, screw in the screwbolt with tangentia or torque wrench.	al impact screw driver
7	After installation, the head of the anchor is supported undamaged.	on the fixture must be
2. Adjustment		
8	Screw may be untightened maximum 10mm.	
9	After adjustment, screw in the screwbolt with tangentia or torque wrench.	al impact screw driver
10	After installation, the head of the anchor is supported be undamaged.	on the fixture and must
 the fastener may be ad case. The relining carri 	with screwbolt size TSM 8 - TSM 14 for all anchorage depths justed max. 2x. The fastener must not be screwed back by m ad out during adjustment must not exceed 10 mm in total. The path hnom must still be maintained after the adjustment.	ore than 10mm in each
Screwbolt TSM		
Intended use Installation instructions - Adj	ustment	Annex B5

Anchor size				TS	M 6		SM	8	Т	SM 1	0	Т	SM 1	2	Т	SM 1	4
Nominal embedme	ent depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Installation factor		γinst	[-]							1	,0						
Tension load				•													
Steel failure																	_
Characteristic resis	stance	N _{Rk,s}	[kN]	1	4		27			45			67			94	
Partial factor		γMs,N	[-]						•	1	,5	•					
			1		Ρι	ıll-ou	t										
Characteristic	cracked	N _{Rk,p}	[kN]	2,0	4,0	5,0	9,0	12	9,0	≥ N ⁰	Rk,c ¹⁾	12				0	4)
resistance in concrete C20/25	uncracked	N _{Rk,p}	[kN]	4,0	9,0	7,5	12	16	12	20	26	16	≥ N ^c	Rk,c ¹⁾	≥	N ⁰ Rk,o	, ¹⁾
Increasing factor for	or N _{Rk,p}	Ψc	[-]		I			1	1	$\left(\frac{f_{ck}}{20}\right)$	0,5)						
										\20)						
Concrete cone fa		la	[]	01	44	05	40	50	40	00	<u> </u>	50	07	00	50	70	00
Effective anchorag Spacing	je deptn	Scr,N	[mm] [mm]	31	44	35	43	52	43	60 3	68 n _{ef}	50	67	80	58	79	92
Edge distance			[mm]								hef						
	cracked	K _{cr,N}	[-]							7							
Factor k ₁	uncracked	kucr,N	[-]							11							
Splitting																	
Characteristic resis	stance	$N^0_{Rk,sp}$	[kN]						min	I [N⁰ _R	_{k,c;} N	Rk,p]					
Spacing		Scr,sp	[mm]	120	160	120	140	150	140	180	210	150	210	240	180	240	280
Edge distance		C _{cr,sp}	[mm]	60	80	60	70	75	70	90	105	75	105	120	90	120	140
Shear load																	
Steel failure with	<u>out</u> lever arm	ו		_					_			_					
Characteristic resis	stance	$V^0_{Rk,s}$	[kN]	7	,0	13	,5	17,0	22,5	34	,0	33,5	42	2,0		56,0	
Partial factor		γMs,V	[-]							1,	25						
Ductility factor		k 7	[-]							0	,8						
Steel failure <u>with</u>	lever arm		1	-													
Characteristic bene resistance	ding	M ⁰ Rk.s	[Nm]	10),9		26			56			113			185	
Concrete pry-out	failure																
Pry-out factor		k ₈	[-]	1	,0		1,0		1,0	2,	0	1,0	2	,0	1,0	2,	0
Concrete edge fa	ilure							1					1				
Effective length of	anchor	$I_{f} = h_{ef}$	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Outside diameter o			[mm]	(6		8			10			12			14	
¹⁾ N ⁰ _{Rk,c} according to	o EN 1992-4:	2018															
Screwbolt TSM	N																
Performance Characteristic valu	ues for static	or qua :	si-stat	ic loa	ads									▲	nne	ex C	1

Page 14 of European Technical Assessment ETA-16/0655 of 19 May 2020

Anchor size			TS	М 6	TSM 8	TSN	110	TSM 12	TSM 14
Nominal embedment depth	h _{nom}	[mm]	40	55	65	55	85	100	115
Installation factor	γinst	[-]				1,	0		
Tension load									
Steel failure									
Characteristic resistance	N _{Rk,s,eq}	[kN]	1	4	27	4	5	67	94
Partial factor	γMs	[-]				- 1,	5		
Pull-out									
Characteristic resistance	N _{Rk,p,eq}	[kN]	2,0	4,0	12	9,0		≥ N ⁰ Rk,c (C20	/25) 1)
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	31	44	52	43	68	80	92
Spacing	Scr,N	[mm]				3h	lef		
Edge distance	C cr,N	[mm]				1,5	h _{ef}		
Shear load									
Steel failure <u>without</u> lever arn	n								
Characteristic resistance	$V_{Rk,s,eq}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4
Partial factor	γMs	[-]				1,2	25		
Concrete pry-out failure									
Pry-out factor	k ₈	[-]			1,0			2,0	
Concrete edge failure									
Effective length of anchor	$I_{f} = h_{ef}$	[mm]	31	44	52	43	68	80	92
Outside diameter of anchor	d _{nom}	[mm]	(6	8	1	0	12	14
Factor forfilling of annular		[-]				1,	0		
annular gap <u>with</u> filling of annular	gap ^{α_{gap}}	[-]				0,	5		
⁹ N ⁰ _{Rk,c} according to EN 1992-4:201	8								
Screwbolt TSM								Ar	

Table C3: Characteristic resistance for seismic loading, performance category C2, with filling of annular gap, screwbolt TSM, zinc plated Anchor size **TSM 8 TSM 10 TSM 12 TSM 14** Nominal embedment depth [mm] 65 85 100 115 hnom Installation factor 1.0 [-] γinst **Tension** load Steel failure Characteristic resistance [kN] 27 45 67 94 N_{Rk,s.eq} Partial factor [-] 1,5 γMs Pull-out Characteristic resistance N_{Rk,p,eq} [kN] 2,4 5,4 7,1 10.5 Concrete cone failure Effective anchorage depth h_{ef} [mm] 52 68 80 92 Spacing [mm] 3h_{ef} Scr,N Edge distance 1,5h_{ef} Ccr,N [mm] Shear load Steel failure without lever arm V_{Rk,s.eq} Characteristic resistance [kN] 9,9 18,5 31,6 40,7 1,25 Partial factor [-] γMs Concrete pry-out failure Pry-out factor k8 [-] 1,0 2,0 Concrete edge failure Effective length of anchor $I_f = h_{ef}$ [mm] 52 68 80 92 Outside diameter of anchor [mm] 8 10 12 14 dnom Factor for annular gap 1,0 [-] $lpha_{ ext{gap}}$ with filling of annular gap

Screwbolt TSM	
Performance Characteristic resistance for seismic loading , performance category C2 <u>with</u> filling of annular gap	Annex C3

Ancho	r size			TSM 8	TSM 10	TSM 12	TSM 14		
Nomina	al embedment depth	h _{nom}	[mm]	65	85	100	115		
nstalla	tion factor	γinst	[-]		1	,0			
Tensio	on loads								
	Steel failure					1			
ы Чо	Characteristic resistance	N _{Rk,s.eq}	[kN]	27	45	67	94		
Hexagon head	Partial factor	γMs	[-]		1	,5			
Не	Pull-out								
	Characteristic resistance	N _{Rk,p,eq}	[kN]	2,4	5,4	7,1	10,5		
¥	Steel failure								
Countersunk head	Characteristic resistance	N _{Rk,s.eq}	[kN]	27	45	No performar	nce assesse		
nter	Partial factor	γMs	[-]	1	,5	No performa	nce assesse		
ino:	Pull-out				_	-			
0	Characteristic resistance	N _{Rk,p,eq}	[kN]	2,4	5,4	No performar	nce assesse		
Concre	ete cone failure				_				
Effectiv	ve anchorage depth	h _{ef}	[mm]	52	68	80	92		
Spacin	-	Scr,N	[mm]			h _{ef}			
<u> </u>	listance	Ccr,N	[mm]		1,	5 h _{ef}			
	loads								
Steel f	ailure <u>without</u> lever arm				1	1			
Hexagon head	Characteristic resistance	$V_{Rk,s.eq}$	[kN]	10,3	21,9	24,4	23,3		
Ĭ	Partial factor	γMs	[-]		1	,25			
counter- sunk head	Characteristic resistance	$V_{Rk,s.eq}$	[kN]	3,6	13,7	No performa	nce assesse		
n S C O	Partial factor	γMs	[-]	1,	25	No performance assesse			
Concre	ete pry-out failure								
Pry-ou	t factor	k ₈	[-]	1,0		2,0			
Concre	ete edge failure								
	ve length of anchor	$I_f = h_ef$	[mm]	52	68	80	92		
	e diameter of anchor	d _{nom}	[mm]	8	10	12	14		
	for annular gap <u>It</u> filling of annular gap	αgap	[-]		(),5			
	wbolt TSM					I			

Anchor size					M 6	Т	SM 8	в	Т	SM 1	0	TSM 12			т	SM [·]	14	
Nominal anchorag	minal anchorage depth hnom [mm]		[mm]	40 55		45	55	65	55	75	85	65	85	100	75	100	115	
Steel failure (tension and shear resistance																		
	R30			0	0,9		2,4			4,4			7,3			10,3		
Characteristic resistance	R60	N _{Rk,s,fi}	ILAND.	0,8			1,7		3,3		5,8			8,2				
	R90	V _{Rk,s,fi}	[kN]	0	0,6		1,1		2,3			4,2				5,9		
	R120			0	,4		0,7			1,7			3,4			4,8		
Steel failure <u>with</u>	lever arn	า										_						
	R30			0	,7	2,4			5,9			12,3			20,4	ł		
Characteristic bending	R60	− M ⁰ _{Rk,s,fi}	[Nm]	0,6		1,8		4,5			9,7		15,9					
resistance	R90	IVI RK,S,II		0,5		1,2		3,0			7,0		11,6					
	R120			0,3		0,9		2,3			5,7			9,4				
Edge distance		Ccr,fi	[mm]							2	h _{ef}							
In case of fire atta	ack from m	ore than c	one side	, the	minir	num	edge	e dista	ance	shall	be ≥	300	mm					
Spacing		Scr,fi	[mm]							4	h _{ef}							
be calculated acc				wet	concr	ete b	oy at I	least	30 m	im co	ompa	red to) the	giver	ı valı	es.		

							TSM 8	-	-	SM 1	-	TSM 12 65 85 100			TSM 14		
oneior	nent depth	າ _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
ension	n load			<u> </u>	1		•			<u>.</u>		1	<u>.</u>		1		
	Tension load	Ν	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	5,7	9,4	12,3	7,6	12,0	15,1
cracked concrete		δησ	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	0,9	0,5	1,0	0,5	0,8	0,7
0 0	Displacement -	δn∞	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
σ	Tension load	Ν	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	7,6	13,2	17,2	10,6	16,9	21,2
uncracked concrete		δησ	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	1,0	1,1	1,2	0,9	1,2	0,8
00 NU	Displacement — ठ⊦	δN∞	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
Querbe	eanspruchung	J	<u>I</u>			<u> </u>		1					<u>I</u>		L	<u> </u>	I
Shear load V [kN]		3,3 8,6				16,2			20,0			30,5					
Displacement -		δνο	[mm]	1,	55		2,7		2,7			4,0		3,1			
	Dioplacement	δv∞	[mm]	3,	1	4,1			4,3			6,0			4,7		

Screwbolt TSM

Performance Displacements under static or quasi-static loads

Annex C6

Table C7:Displacements under seismic loading, performance category C2with filling of annular gap, screwbolt TSM, zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115
Tension load						
Displacement DLS	$\delta N,eq(DLS)$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{\text{N,eq}(\text{ULS})}$	[mm]	1,74	1,36	2,36	4,39
Shear load						
Displacement DLS	$\delta v, \text{eq(DLS)}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	$\delta v, eq(ULS)$	[mm]	5,19	6,72	5,37	9,27

Table C8:Displacements under seismic loading, performance category C2withoutfilling of annular gap, screwbolt TSM, zinc plated

h _{nom}	[mm]	65	85	100	445		
		00	00	100	115		
$\delta_{\text{N,eq}(\text{DLS})}$	[mm]	0,66	0,32	0,57	1,16		
$\delta_{\text{N,eq}(\text{ULS})}$	[mm]	1,74	1,36	2,26	4,39		
$\delta_{\text{N,eq}(\text{DLS})}$	[mm]	0,66	0,32	No performance assessed			
δN,eq(ULS)	[mm]	1,74	1,36	No performance assessed			
				•			
earance hol	e in the f	fixture					
$\delta_{V,eq(\text{DLS})}$	[mm]	4,21	4,71	4,42	5,60		
$\delta_{V,eq(ULS)}$	[mm]	7,13	8,83	6,95	12,63		
th clearance	e hole in	the fixture					
$\delta_{V,eq(DLS)}$	[mm]	2,51	2,98	No performar	nce assessed		
$\delta_{V,eq(ULS)}$	[mm]	7,76	6,25	No performance assessed			
	δ _{N,eq} (ULS) δ _{N,eq} (DLS) δ _{N,eq} (ULS) earance hole δ _{V,eq} (DLS) δ _{V,eq} (ULS) th clearance δ _{V,eq} (DLS)	$\frac{\delta_{N,eq(ULS)}}{\delta_{N,eq(ULS)}} [mm]$ $\frac{\delta_{N,eq(ULS)}}{\delta_{N,eq(ULS)}} [mm]$ earance hole in the formation of the second states of th	$\begin{array}{c c} \delta_{N,eq(ULS)} & [mm] & 1,74 \\ \hline \delta_{N,eq(ULS)} & [mm] & 0,66 \\ \hline \delta_{N,eq(ULS)} & [mm] & 1,74 \\ \hline \end{array}$	$\begin{array}{c ccccc} \delta_{N,eq(ULS)} & [mm] & 1,74 & 1,36 \\ \hline \\ \hline \\ \delta_{N,eq(ULS)} & [mm] & 0,66 & 0,32 \\ \hline \\ \delta_{N,eq(ULS)} & [mm] & 1,74 & 1,36 \\ \hline \\ earance hole in the fixture \\ \hline \\ \hline \\ \delta_{V,eq(ULS)} & [mm] & 4,21 & 4,71 \\ \hline \\ \hline \\ \delta_{V,eq(ULS)} & [mm] & 7,13 & 8,83 \\ \hline \\ th clearance hole in the fixture \\ \hline \\ \hline \\ \delta_{V,eq(DLS)} & [mm] & 2,51 & 2,98 \\ \hline \\ \hline \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

Screwbolt TSM

Performance

Displacements under seismic loading, performance category C2

Annex C7